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Abstract  

 

This report details the research, calculations, and code that was performed by the group in order 

to solve the problem within the parameters of the design project itself. This included determining 

the lowest cost possible to construct an adequately performing retaining wall 80 feet wide and 5 

feet tall using pressure-treated standard structural timber  
 
The problem was approached by assuming the planks to be simply supported beams bridging the 

gap between piles, enabling the planks to be modeled with an even force distribution to find the 

minimum section modulus needed for the planks. Similarly, the piles were assumed to be 

cantilevered beams with an asymmetrical force distribution, allowing the calculation of the 

minimum section modulus for the piles. The equations gathered from the analysis of the planks 

and piles were then inputted to a MATLAB script where the cheapest possible combination was 

determined.  
 

Introduction 

                                     

Typically used in marine applications, pile-and-plank retaining walls have become increasingly 

popular in residential and public areas, offering a variety of design options. Their design 

generally consists of horizontal planks supported by vertical piles and are used to create a terrace 

in sloped terrain, helping mediate erosion caused by storms and allowing for the topography of 

an area to be modified. Due to the nature of these walls, they are faced with high loads due to the 

backfill of soil and must be designed for such. 

 

Using pressure-treated Standard Structural Timber, an 80-foot-long, 5-foot-tall terrace must be 

constructed with an allowable flexural stress of 1200 psi. The load faced by the wall acts 

laterally against it and begins at 500 lb/ft2 at the base, which then linearly decreases to 100 lb/ft2 

at the top of the wall. The piles should extend 5 feet underground, be evenly spaced with piles at 

either end of the wall and have a square cross section. The planks should all be the same size and 

have the same length as the spacing between the piles, such that each plank is supported by a pile 

at each end. The wall should be designed to minimize cost, given a $14/ft3 cost for the timber, 

available in 8, 10, and 12-foot lengths, accompanied with a $40 per pile cost for the concrete 

footing necessary for support. 

 

We were able to ensure that we came up with the strongest and cheapest beam through the 

results we were able obtain using hand and iterative calculations through MATLAB. Without 

these clear measurable results, we would be unable to be as certain about the success of our 

design. We were able to obtain the minimum section modulus of our planks and piles of the 

retaining wall by hand, in addition to determining which plank sizes were possible by analyzing 

the divisibility of the plank lengths and the total timber sizes of 8, 10, and 12 ft. Then, using 

MATLAB, we were able to acquire the costs of each combination of possible planks and pile 

spacings, the results of which were then checked by hand. 

 

 

 

 



Analysis & Design 

 

In order to design the most cost-effective retaining wall within the constraints specified above, 

our group decided that an iterative approach using MATLAB would be the best way to ensure 

that we fell within allowable stress limits and achieved the lowest overall cost. Before we could 

begin to code, however, it was necessary to perform symbolic calculations so that we could 

explore the entire solution space. 

 

We shall begin with the analysis of the planks, which are the horizontal beams in between the 

vertical piles. We made several assumptions regarding the planks, including: 

 

1. The highest pressure, 500 
𝑙𝑏

𝑓𝑡2
, is uniformly distributed across the bottom plank. Thus, we 

conduct a stress analysis of the bottom plank as the “worst-case”. Designing for the 

highest pressure on a plank ensures that all planks are strong enough to support the 

prescribed loads. 

 

2. The planks can effectively be modeled as simply supported beams with the dimensions of 

the piles considered negligible. If the pile dimensions were significant, they would in 

effect reduce the length of a plank under load and thus reduce the maximum bending 

moment experienced by the plank. 

 

3. All planks in the wall are to be the same dimensions, and the span of each plank is the 

same (as a consequence of equal pile spacing). 

 

 

 

 

 

 

 

 

From the equations for equilibrium, expressions can be constructed for the reactionary forces at 

A and B. 

 

Σ𝑀𝐴 = 0 𝑙𝑏 ∗ 𝑓𝑡 

 

Fig. 1 The dimensions of a plank. If there 

are Np piles, there will be Np-1 planks 

between them. 

Fig. 2 FBD of the simply supported plank. 

The distributed load across the length 

takes into account the pressure acting 

along the width of the plank to be 

determined. 



−500𝑤𝑝𝑙𝑎𝑛𝑘𝑙𝑝𝑙𝑎𝑛𝑘 (
𝑙𝑝𝑙𝑎𝑛𝑘

2
) + 𝑅𝐵𝑙𝑝𝑙𝑎𝑛𝑘 = 0 

 

−500𝑤𝑝𝑙𝑎𝑛𝑘 (
40

𝑁𝑃 − 1
) (

80

𝑁𝑃 − 1
) + 𝑅𝐵 (

80

𝑁𝑃 − 1
) = 0 

 

𝑅𝐵 = 500𝑤𝑝𝑙𝑎𝑛𝑘 (
40

𝑁𝑃 − 1
) =

20000𝑤𝑝𝑙𝑎𝑛𝑘

𝑁𝑝 − 1
 

 

𝑅𝐴 = 500𝑤𝑝𝑙𝑎𝑛𝑘 (
40

𝑁𝑃 − 1
) =

20000𝑤𝑝𝑙𝑎𝑛𝑘

𝑁𝑝 − 1
      (𝑏𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦) 

 

 

From this, expressions for the shear force and bending moment at any point in the beam can be 

constructed according to the free-body diagram below. 

 

𝑉(𝑥) =
20000𝑤𝑝𝑙𝑎𝑛𝑘

𝑁𝑃 − 1
− 500𝑤𝑝𝑙𝑎𝑛𝑘𝑥 

 
No reactionary moments exist at the pins, so the 

integration constant for the shear force equation is zero. 

 

𝑀(𝑥) =  ∫ 𝑉(𝑥) 

 

𝑀(𝑥) =
20000𝑤𝑝𝑙𝑎𝑛𝑘

𝑁𝑃 − 1
𝑥 − 250𝑤𝑝𝑙𝑎𝑛𝑘𝑥2 

 
The maximum shear force for this beam exists at either of the simple supports, and the maximum 

bending moment occurs halfway along the beam. Thus, making the appropriate substitutions, 

 

𝑉𝑚𝑎𝑥 =  
20000𝑤𝑝𝑙𝑎𝑛𝑘

𝑁𝑃 − 1
 

 

𝑀𝑚𝑎𝑥 =  
20000𝑤𝑝𝑙𝑎𝑛𝑘

𝑁𝑃 − 1
(

40

𝑁𝑃 − 1
) − 250𝑤𝑝𝑙𝑎𝑛𝑘 (

40

𝑁𝑃 − 1
)

2

 

 

The maximum flexural stress in a beam is equal to the maximum bending moment experienced 

by the beam divided by the section modulus of a beam. Using the expression for the maximum 

bending moment, we can develop an expression for the minimum section modulus required for a 

given pile spacing and plank width: 

 

𝜎𝑚𝑎𝑥 =
𝑀𝑚𝑎𝑥

𝑆𝑚𝑖𝑛
 

 

Fig. 3 Reactions existing at an arbitrary 

cross-section of a given plank. 



𝑆𝑚𝑖𝑛 = (
20000𝑤𝑝𝑙𝑎𝑛𝑘

𝑁𝑃−1
(

40

𝑁𝑃−1
) − 250𝑤𝑝𝑙𝑎𝑛𝑘 (

40

𝑁𝑃−1
)

2

)/172800
𝑙𝑏

𝑓𝑡2  

 

Now we shall analyze the piles that are supporting the planks. We made several assumptions 

regarding the piles, including: 

 

1. The piles are all evenly spaced and square in cross-section. 

 

2. The piles act as cantilevered beams with a pressure distribution linearly decreasing from 

500 
𝑙𝑏

𝑓𝑡2 at the base of the pile to 100 
𝑙𝑏

𝑓𝑡2 at the top of the pile. 

 

3. The maximum bending moment at any cross-section of the pile occurs at the base where 

the reactionary moment exists. This assumption will be verified following further 

analysis. 

 

 

 

 

 

 

The pressure distribution for the piles can be modeled as: 

 

𝑃(𝑥) = 500 − 80𝑥         0 < 𝑥 < 5 

 
Therefore, the equivalent point load along a length of pile can be expressed as the integral of the 

pressure distribution (yields force per length of plank) times the pile spacing: 

 

𝐿𝑒𝑞 =  ∫ (500 − 80𝑥)𝑑𝑥
5

0

(
80

𝑁𝑃 − 1
) 

 

Fig. 5 Each beam functions as a simple 

support for two different planks, carrying 

half the load of each plank by symmetry. 

Thus, the force experienced by one pile is 

equivalent to the force acting along one 

complete pile spacing. 

Fig. 4 Rotation of the pile in space to 

represent a cantilevered beam. Note the 

reactionary force and moment existing at 

the base and the equivalent point load. 



𝐿𝑒𝑞 =
120000

𝑁𝑃 − 1
 

 

The point load acts at the centroid of the pressure distribution, which can be obtained by 

calculating a weighted average of the rectangular and triangular components of the overall 

pressure distribution and exists at 

 

𝑥𝑐 = 1.9444̅ 𝑓𝑡 

 

The equivalent point load and centroid of the distribution allows us to calculate the reactionary 

moment at the base of the beam, which is taken to be the maximum bending moment 

experienced by the beam: 

 

𝑀𝑅 = 𝑀𝑚𝑎𝑥 = 𝐿𝑒𝑞𝑥𝑐 =
120000

𝑁𝑃 − 1
(1.9444̅) 

 

𝑀𝑅 =
233333.33̅

𝑁𝑃 − 1
 

 

Using the expression given above for the minimum section modulus, the minimum section 

modulus of a pile for a given pile spacing is given by: 

 

𝑆𝑚𝑖𝑛 =
1.35030864

𝑁𝑃 − 1
 

 
Now that we have developed expressions constraining the possible combinations of piles and 

planks with regard to strength, we must consider the total cost of all possible combinations of 

standard structural timbers, which are available for purchase in 8, 10, or 12-foot lengths. 

Regarding the pile lengths, the wall must be at least five feet high, which implies that five feet 

must also extend below the ground. Thus, if a plank width is chosen that can be multiplied by an 

integer to give five feet, a ten-foot pile length is sufficient. However, if a plank width is chosen 

that does not evenly go into five feet, the number of planks must be rounded up so that the 

vertical height of the wall is greater than five feet. In this case, a 12-foot length of timber must be 

purchased for each pile and cut to the appropriate size. The timber costs $14 per cubic foot and 

has a fixed cost of $40 per pile. The cost of the piles is given by the following: 

 

𝐶𝑝𝑖𝑙𝑒 = (14)(10)𝑤𝑝𝑖𝑙𝑒
2 𝑁𝑃 + 40𝑁𝑃     𝑖𝑓 

5

𝑤𝑝𝑙𝑎𝑛𝑘
 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

 

𝐶𝑝𝑖𝑙𝑒 = (14)(12)𝑤𝑝𝑖𝑙𝑒
2 𝑁𝑃 + 40𝑁𝑃     𝑖𝑓 

5

𝑤𝑝𝑙𝑎𝑛𝑘
 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

 

Regarding the planks, the spacing between the piles is equal to the length of the planks. The 

minimum number of piles is eight, because any less would result in a pile spacing greater than 

the longest length of timber available for purchase. We are limited to a maximum of 41 piles. 



The pile spacing thus ranges from two feet to twelve feet. In this range, there are certain values 

for pile spacing that would allow us to use a full length of timber with no waste. These are 

summarized in the table below: 

 

Pile Spacing (ft) Possible # of Planks Timber Length Used (ft) 

2 4 8 

2.4 5 12 

2.5 4 10 

8/3 3 8 

3 4 12 

10/3 3 10 

4 2 8 

5 2 10 

6 2 12 

8 1 8 

10 1 10 

12 1 12 

 

For pile spacings between those given in the table, the best option for a given pile spacing is the 

same as the next-longest pile spacing. For instance, for a pile spacing of 2.75 feet, it is better to 

buy a 12-foot length, produce four planks, and waste one foot as opposed to buying an 8-foot 

length, producing 2 planks, and wasting 2.5 feet. 

 

For any given pile spacing, the cost of the planks is given by: 

 

# 𝑜𝑓 𝑟𝑜𝑤𝑠 =
5 𝑓𝑡

𝑤𝑝𝑙𝑎𝑛𝑘
  𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑢𝑝 𝑖𝑓 𝑛𝑜𝑡 𝑤ℎ𝑜𝑙𝑒 # 

 

# 𝑜𝑓 𝑝𝑙𝑎𝑛𝑘𝑠 = (# 𝑜𝑓 𝑟𝑜𝑤𝑠)(𝑁𝑝 − 1) 

 

# 𝑜𝑓 𝑡𝑖𝑚𝑏𝑒𝑟𝑠 =  
# 𝑜𝑓 𝑝𝑙𝑎𝑛𝑘𝑠

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 # 𝑜𝑓 𝑝𝑙𝑎𝑛𝑘𝑠 𝑝𝑒𝑟 𝑡𝑖𝑚𝑏𝑒𝑟
  𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑢𝑝 𝑖𝑓 𝑛𝑜𝑡 𝑤ℎ𝑜𝑙𝑒 # 

 

𝐶𝑝𝑙𝑎𝑛𝑘𝑠 = (# 𝑜𝑓 𝑡𝑖𝑚𝑏𝑒𝑟𝑠)(𝑝𝑙𝑎𝑛𝑘 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛)(𝑡𝑖𝑚𝑏𝑒𝑟 𝑙𝑒𝑛𝑔𝑡ℎ)(14)  

 

With these relationships established, our team developed a MATLAB script for an iterative 

approach to the problem of designing the cheapest safe wall. The script first converts the data 

from Table A-15 into base units of feet. Section modulus values used for each timber were 



manually adjusted, as the orientation of the beam for the section modulus values in Table A-15 

did not match the orientation for application in our wall. 

 

The script uses nested loops along with conditional statements and the formulas developed for 

minimum section moduli of the planks and piles to test every combination of pile spacing, plank 

dimensions, and pile dimensions possible for the wall. Only those with section moduli greater 

than the minimum were added to a possibility’s matrix. Then, using further iteration and 

conditional statements, the cost of the piles and planks was calculated using the above formulas 

for each combination that passed the section modulus test. The script then compared all costs and 

identified the cheapest possible combination of piles and planks. Running the script returns the 

following results: 

 

• Pile spacing: 2.3529 (80/34) feet 

• Number of piles: 35 

• Pile dimensions: 8 in x 8 in x 10 ft (7.5 in x 7.5 in x 10 ft dressed size) 

• Plank dimensions: 2 in x 8 in x 8 ft (13/8 in x 7.5 in x 8 ft dressed size) 

• Number of planks: 272 

• Cost: $4096.10 

These dimensions correspond to the following design diagrams (not to scale): 

 

 



 

 

 

Results 

 

After analyzing all possible retaining walls, our MATLAB script identified the aforementioned 

characteristics of the most cost-effective, safe retaining wall. Using the equations developed 

above, we manually verified that the section modulus values for the piles and planks exceeded 

the minimum section modulus values, given pile spacing and plank width: 

 

 

𝑆2𝑥8 = 0.001910 𝑓𝑡3  >   𝑆𝑚𝑖𝑛,𝑝𝑙𝑎𝑛𝑘 

 

𝑆𝑚𝑖𝑛,𝑝𝑙𝑎𝑛𝑘 = 0.001252 𝑓𝑡3 



 

𝑆12𝑥12 = 0.04069 𝑓𝑡3  >   𝑆𝑚𝑖𝑛,𝑝𝑖𝑙𝑒 

 

Additionally, to verify our assumption that the maximum bending moment in the pile occurs at 

the base of the pile, we expressed the bending moment at any point in the beam in terms of x as: 

 

𝑀(𝑥) = 𝑀𝑅 + (4000 − 320𝑥)(𝑥)
2000𝑥2 −

640𝑥3

3
4000𝑥 − 320𝑥2

 

 

The first term in the above equation represents the average distributed load along the pile for a 

given length x. The second term is the length of the pile, giving the total load on the pile for a 

length x. The final term represents the centroid of the distributed load across the arbitrary cross-

section. Using MATLAB to differentiate this expression, we found that the only critical point is 

at x=25/4, which lies beyond the end of the beam. This expression is therefore strictly increasing 

over the length of the beam, and thus our assumption regarding the maximum bending moment is 

correct. 

 

The following chart summarizes the overall cost of our beam: 

 

Component Piles Planks 

Dimensions 7.5 in x 7.5 in x 10 ft 13/8 in x 7.5 in x 12 ft 

Volume Per 

Unit 
3.90625 ft3 1.015625 ft3 

Number 

Required 
35 55 

Unit Cost $54.6875 $14.21875 

Cost $1914.0625 $782.03125 

  

Therefore: 

 

𝐹𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝑝𝑖𝑙𝑒𝑠 + 𝐶𝑜𝑠𝑡𝑝𝑙𝑎𝑛𝑘𝑠 + $40(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖𝑙𝑒𝑠) 

 

 = $1914.0625 + $782.03215 + $40(35) 

 

 

 

 

→  𝐹𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 = $4096.10  

𝑆𝑚𝑖𝑛,𝑝𝑖𝑙𝑒 = 0.03971 𝑓𝑡3 



Now, to plot the cost of the retaining wall versus the number of piles used, we need to determine 

which equation of Cpile to use. From Table A-15, 

 

𝑤𝑝𝑙𝑎𝑛𝑘 = 7.5 𝑖𝑛 →  
5

𝑤𝑝𝑙𝑎𝑛𝑘
=

5

7.5 𝑖𝑛 ∗  
1 𝑓𝑡

12 𝑖𝑛

= 8 𝑓𝑡−1 

 

Because this value is an integer, the equation used to calculate Cpile is: 

 

𝐶𝑝𝑖𝑙𝑒 = (14)(10)𝑤𝑝𝑖𝑙𝑒
2 𝑁𝑝 + 40𝑁𝑝 | 𝑤𝑝𝑖𝑙𝑒 = 7.5 𝑖𝑛 

 

Which when plotted from 8 ≤ Np ≤ 41 piles gives graph: 

 

 
 

In summary, after careful iterative analysis of the stresses existing in the planks and piles, we 

determined that the most cost-effective beam has 35 eight-by-eight evenly spaced piles and eight 

rows of two-by-eight planks spanning the gaps. This combination ensures that the allowable 

stresses are not exceeded, and the cost is as low as possible. 

 


